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Abstract

Aircraft performance can be optimized at the flight condition by using available redundancy among
actuators. Effective use of this potential allows improved performance beyond limits imposed by
design compromises. Optimization based on nominal models does not result in the best performance
of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance
parameters, such as speed or fuel flow, in flight based exclusively on flight datais proposed. The
algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can
optimize several decision variables at the same time. An adaptive constraint controller integrated into
the algorithm regulates the optimization constraints, such as altitude or speed, without requiring any
prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy
incorporation (or removal) of optimization constraints or decision variables to the optimization
problem. An important part of the contribution is the development of analytical tools enabling
convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow
minimization and vel ocity maximization modes of the algorithm are demonstrated on the NASA
Dryden B-720 nonlinear flight ssimulator for the single- and multi-effector optimization cases.

Nomenclature

A excitation amplitude, deg

ACC adaptive constraints controller

Cp drag coefficient

CDu Cp sensitivity with respect to Mach number
CD5 Cp sensitivity with respect to a generic decision variable
D total drag, Ib

Ep potential energy

FC flight condition (weight, center of gravity, altitude, winds, true airspeed)
G transfer function gain

G(s) transfer function

h altitude, ft

J optimized function

K optimizer adaptation gain

L lift, Ib

m mass of the aircraft, slugs

M pitch moment, Ib - ft

MAW mission adaptive wing (F-111 program)

PI performance index

PLA power-lever angle, deg

PSC performance-seeking control

ol dynamic pressure (1/ 2pV2)

Ry W-rotation matrix
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Laplace variable

excitation signal

wing surface area (2433 ft)

thrust, Ib

period of excitation signal, sec

thrust required, Ib

control signal

adaptive magnitudes of adaptive constraints controller
true airspeed, ft/sec

angle of attack, deg

parameters of envelope equivalent system
curvature of optimized function J or performance index
flightpath angle

aileron deflection, deg

decision variable

elevator deflection, deg

flap deflection, deg

probing signal

generic surface deflection

total input on decision variable

initial value of decision variable

trigonometric vector

adaptation gain of adaptive constraints controller
air density, slug/ft3

phase angle, rad

perturbation signal frequency, rad/sec

Introduction

Increasing competition among airline manufacturers and operators worldwide has spawned a recent
all-out effort to reduce direct operating costs. Because an airline’s net profit is the difference between
two large numbers (revenues and costs) measured in percentage of the costs, asmall reduction in direct
costs can have considerable leverage in an industry with a profit margin of about 5 percent (ref. 1).
After ownership costs (approximately 50 percent of direct operating costs), the second mgjor driver of
costsisfuel consumption, which accounts for approximately 18 percent (ref. 1). The effect of aircraft
performance on an operator’s profitability can be crucial because production costs are not usually
under the operator’s control. Improved performance can result in less required thrust and can benefit
engine wear. Thisimprovement can increase engine life and further reduce maintenance and direct
operating costs.



NASA conducted research in the late 1970's and 1980’s that aimed toward improving aircraft
performance. This effort was part of the aircraft energy efficiency and advanced fighter technology
integration programs. (Ref. 2 surveyed past attempts to apply active controls to improve aircraft
perform- ance.) The F-111 mission adaptive wing (MAW) program (ref. 3) showed the potential for
applying the variable wing camber concept to transport aircraft. Standard wing and wing configuration
point designs, by necessity, represent the result of major compromises among numerous design
considerations and flight conditions. By adapting the wing configuration to the particularities of the
flight, variable wing cambering allows those design compromisesto be overcome. The MAW program
clearly demonstrated the effects of this technology on performance improvements. Two modes of the
F-111 MAW are applicable to transport aircraft: the cruise camber control mode, which was designed
for real-time adaptive optimization with drag reduction, and the maneuver camber control mode,
designed to maximize lift-to-drag ratio (L/D).

Recent extensive wind-tunnel testing and flight experiments with wide-body transports, performed by
the German company Messerschmitt-Bolkov-Blohm (now Deutsche Aerospace, a member of the
Airbus Consortium), show that continuous camber variations can improve the efficiency of the most
advanced wings, even at their best design points: a clear consequence of transcending the point design
compromises (ref. 4). Besides drag improvements (potentially a 3- to 9-percent increasein L/D is
reported in ref. 4), camber control may also improve other aspects of the aircraft design. For example,
an increase of the maximum lift coefficient for the wing buffet onset (a 12-percent increase has been
reported in refs. 4 and 5) or root bending moments aleviation is possible (ref. 6). The same team
showed that coordinated deflections of flaps, ailerons, elevators, stabilator, and (possibly) leading-
edge devices can induce variable wing cambering without the penalty of a new wing box design or a
significant weight increase (refs. 4, 5, and 6). The team has not yet reported on any in-flight adaptive
optimization scheme for performance improvement. Only prescheduled camber repositioning has
been considered.

The performance-seeking control (PSC) program is NASA Dryden Flight Research Center’s

most recent attempt to develop an in-flight performance optimization algorithm. PSC was

developed for optimizing the propulsion system of the F-15 highly integrated digital el ectronic control
(HIDEC) research aircraft in quasi-steady state. PSC encompasses the foll owing optimization

modes:. (a) minimum fuel flow at constant thrust, (b) minimum turbine temperature at constant thrust,
and (c) maximum thrust. Both subsonic and supersonic flight testing of the PSC algorithm has been
concluded and reported by NASA Dryden (ref. 7). The PSC program demonstrates that performance
can be accrued beyond the design point with in-flight optimization; however, as an open-loop
optimization scheme (no direct measure of a performance index (Pl) is used), it relies heavily on a
priori models. Model errors may, therefore, influence considerably the optimization process,
especially when only low-level performance improvements are expected. Measurement biases also
impact the estimation of the current engine parametrization used subsequently to feed the optimization
model in PSC. (Refs. 8 and 9 analyzed the influence of measurement biases over the estimation
process of PSC.) To accommodate the above problems, reference 7 suggested a closed-loop technique
based on a direct measurement of aPl.

Such atechnique should take into account the particularities of actual flight conditions without being
sensitive to model changes or model uncertainties. The MAW program pioneered that type of
approach for its CCC mode using a trial-and-error algorithm, which works for large drag changes
(i.e., 5to 10 percent) but failsfor low-level drag changes (i.e., 1 to 2 percent). Thus, both the PSC and
MAW approaches for in-flight optimization are unsuitable for the low-level drag improvement
expected in transport aircraft, albeit for different reasons. Accordingly, the development of a robust
and efficient algorithm for in-flight aircraft performance optimization isin order.



This paper proposes a perturbational technique (ref. 10) for the adaptive optimization of an aircraft’s
performance through excess thrust improvements. The algorithm, called adaptive performance
optimization, estimates, online, the correlations between periodic perturbations introduced on the
decision variables and their effects on a measured PI. The estimated correlations are then used to
decide average changes on the decision variables that (locally) improve the PI. The optimization
technique can be viewed as bel onging to the gradient-type family, but, instead of signal differentiation,
it uses averaging and signal integration. This characteristic gives the algorithm its strong robustness
with respect to signal measurements’ noise and biases.

For the application at hand, the optimization is performed using the avail able redundancy among
surface effectors. The measured performance index (PI) includes the contributions coming,
simultaneously, from the airframe and the engines to the overall performance changes.

Sensors and instrumentation are, undoubtedly, important elements in any flight performance
optimization research program. Theissues, however, related to those elements are beyond the scope of
this report, which focuses on the methodol ogical aspects of the inflight optimization technique.

Following agenera discussion of the aircraft performance optimization problem, the working
principle of the proposed optimization technique is described. Then, a design procedure is suggested
for the speed-maximization mode at constant altitude and power lever angle (PLA). The deflections of
the surfacesinvolved (i.e., symmetric outboard ailerons and elevator) are linked by the constant atitude
constraint. Thislink between the surfaces transforms the problem into a single decision variable (or
single-surface) optimization. First, the control of the optimization constraint is left to the autopilot,
which attempts to keep the net pitch moment equal to zero and the altitude constant. Up to this point,
the paper closely follows that of Espafiaand Gilyard (ref. 11). Discussed here for the first time are
some limitations of that approach when fast perturbation signals are used. It is shown that, if no
provisions are taken, with a practical (nonideal) autopilot, the perturbations signals may induce
oscillations on the constraints that steer the algorithm away from the optimum values for the decision
variables. A solution to this problem, based on an adaptive oscillation canceller technique, is then
proposed and tested in simulation.

A fuel-flow minimization mode is next considered for constant altitude and speed. It is shown that a
natural extension of the algorithm for the speed-maximization mode at constant atitude is able to take
into account the extra constraint of the fuel-flow minimization mode. The algorithm also compensates
for the effects of nonideal atitude- and velocity-hold functions of the autopilot.

Both modes (vel ocity maximization and fuel-flow minimization) are then tested in simulation using
more than one degree of freedom by optimizing simultaneously with respect to outboard ailerons and
outboard flaps (multisurface optimization) while keeping the elevator as the compensating effector for
pitch and altitude control. The testbed used was the B-720 nonlinear flight simulator at NASA
Dryden’s Simulation Laboratory. The simulations assume full precision of all variables used in the
feedback control laws.

Aircraft Performance Optimization

Most aircraft have a significant redundant control effector capability (i.e., more than one means of
trimming out the forces and moments to obtain a steady-state flight condition). The challenging task
of taking advantage of such capability for an aircraft adaptive in-flight performance optimization isthe
subject of this report.



Control Effectors

Drag minimization potential exists for the entire spectrum of subsonic transport aircraft. Aircraft
manufacturers recognize the potential for performance improvements based on available control
effectors and have implemented some fixed-point reriggings based on flight test results.

Figure 1 illustrates the controls or variables that show potential for optimizing the performance of
current-generation aircraft. These variables include elevator, horizontal stabilizer, outboard aileron,
inboard aileron, flaps, dats, rudder, and center of gravity. Spoilers are not an option for performance
optimization, although spoilers may be a viable controller for drag modulation. Potential selected
control variable tradeoffs are possible between:

» Symmetric aileron or flap (leading edge and trailing edge), or both, and horizontal
stabilizer or elevator

Inboard and outboard symmetric aileron or flap, or both

Elevator and horizontal stabilizer

Inboard and outboard el evator

« Center of gravity and horizontal stabilizer
Rudder and differential thrust
« Sidedlip and rudder deflection

Optimization Strategies

In the following analysis, two optimization modes that take advantage of an increase in excess thrust”
at constant altitude cruise flight are considered: velocity maximization with constant PLA and fuel-
flow minimization at constant speed. In the velocity-maximization mode, an excess thrust increaseis
sensed as an instantaneous accel eration increase. In thismode, the acceleration, aircraft speed, or both,
isused as a Pl (subject to the atitude constraint). When altitude and vel ocity are both constrained,
excess thrust changes are reflected in thrust and fuel-flow changes. Constant velocity and atitude
constraints are achieved by the autopilot through an inner control loop with respect to the optimizing

Horizontal

stabilizer Elevators
950075

Figure 1. Typical subsonic transport control effectors.

*|n practice, for subsonic aircraft at cruise conditions, the main contribution to performance increase comes from airframe drag
reduction. However (technically, at |east), the magnitude being optimized isthe excessthrust defined asthrust minusdrag. This
allows for amore general algorithm perspective.



control law. When only the altitude is held, the autopilot commands the elevator exclusively. When
both altitude and velocity are held, the autopilot also setsthe PLA.

Aircraft Model

The simulation results were obtained with a simulated B-720 at the nominal cruise flight condition:
atitude 30,000 ft, Mach number 0.80, standard atmospheric day, total weight 200,000 Ib. The origina
model was designed for low-speed flight conditions; drag characteristics of the control surfaces were
not modeled or even avail able. Some modifications were required to conduct performance optimization
algorithm design—evaluation at cruise flight conditions. Adding quadratic drag effects as a function of
aileron and flap deflection (i.e., CDes ) incorporated realistic drag characteristics into the model. In
addition, aterm representing drag increases with Mach, Cp , wasincluded. Fuel burn and aeroelastic
effects were not considered. All simulation control laws used the full precision and accuracy of the
variables for feedback control. All variables required for feedback were assumed to be available. No
gust, turbulence, or noise effects were simulated.

Periodic Perturbation Extrema-Searching Technique

Adaptive optimization techniques with periodic perturbation and direct feedback of a measurable Pl
allow for direct optimization of the Pl without requiring amodel (refs. 10 and 12).

Working Principle

The technique, first proposed in reference 12, consists of using sinusoidal probing signals
superimposed on each of the decision variables of the optimization problem. A separate probing signal
frequency is assigned to each decision variable. Online estimation of the correlations between the
sinusoidal perturbations and Pl are used to approximate the components of the local gradient of the P
with respect to the decision variables. The gradient thus estimated is then used as the search direction
in the decision variable space to improve the Pl value. The basic principle of the algorithm is better
described for a quadratic single-input PI, here indicated by J.

For positive constants K and I, consider the unconstrained optimization of the function J(-) of asingle
decision variable & (I" will be referred as to the curvature of J):

3(8) = 3(80) + 31 (5802 (1)

The optimization algorithm is given by the equations (ref. 10):

B(t)= 8,(1) + (1), d4(t) = Asin(w,t) (2a)

d¢ = —KJ(3(t))Asin(w,t—9); 3,(0) =3, (2b)

where . is the decision variable with initial value &, and optimal value &*. The probing signal dg

is superimposed on &, to give the total input &(t). The phase angle ¢ is adesign parameter whose
interest will become clear later. The differential equation (2b) links, in away that is discussed later, the
search speed with the input-output correlation of function J.

Given its nonlinear character, an exact analytical description of equations (1) and (2) is a complicated
task. An approximated analysis is based on the assumption that &.(t) changes much more slowly than

the sinusoidal probing signal &g and J(t). Thisslow variation is ensured by choosing a sufficiently small
integration gain K, also adesign parameter. The analysis technique (see, for example, ref. 13, chap. 6)



consists of substituting the right-hand side of equation (2b) by itstime average over areceding horizon
of time with length equal to the period Ty = 21/ (.

For an arbitrary function f(t), the To-averaged function f(t) isdefined as

t

f(t): = avg{ f()}: = Tl [t @3)
(o]
7

t=To

where T isthe integration variable. The following first-order approximation around d¢(t) of expression
(1) isaso used:

J(ASIN(wt) +,(t)) DI(B(1)) + T (8(t) ) Asin(a,t) (4)

With approximation (4) and definition (3), the averaged right-hand side of equation (2b) iscalculated as

KT (3¢(t) — 30 A%avg( sin(w,t) sin(w,t — §)}

1,5 2 ®)
= EKI’(E’)C(I)—BEDA avg{ cos(¢) — cos(2w,t —¢)}

where, by assuming that d(t) remains almost constant during atime interval T, d.(t) is approximated
by the T,-averaged function d¢(t).

From equation (5), the solutions of the nonlinear and time-varying differential equation (2b) are
approximated by those resulting from the averaged linear and time-invariant differential equation (it
can be easily shown using definition (3) that 5 = §,):

1

-3 KT (3¢ — 80) Acos(4) (6)

5. 0

Whenever ¢ O (—1/2, T/ 2), 3 converges exponentially to the optimum value & with time constant
2/[KAZT cos (¢)]. Two important properties can be derived from the above analysis:

P1: In the average, &, tends exponentially toward its optimal value &* for wide ranges of ¢,
K,andT.

P2: In the average, biases on the measurements do not affect this result because, from
equations (3) through (5), their averaged effect on equation (6) is zero.

To obtain the next result, we now assume that, for alarge enough time t' , (practical) convergence has
already been achieved, and thus, if nisaninteger suchthat t = nT >t', then dc(t) = 6? = 9.
From equation (2b), we now can write

t
8c(t) = &, 08,(t) = 5K J'J(T)Asin(on—q))dt @)
)

Thus, the following necessary condition for convergence follows:
t

0. _ig . O
cor, 3¢ 5.5 = lim —1-,IJ(r)Asm(mor—¢)dT -0 )
0 0 tee 202



Equation (8) shows that the algorithm attempts to adjust the value of &, so that the correlation of the P
and the excitation signalsis zero. This correlation interpretation of the algorithm, and the fact that
sinusoidal signals of different frequencies have zero correlation, explain another important property of
the algorithm; namely,

P3: The effects that an additive measurement noise on Pl have on the average of d. are
negligible unless the noise power spectrum is concentrated around the excitation

frequency wy.
Control Law Structure: Analysisand Design

Figure 2 shows a block diagram of a practical extremum-searching system with a single-decision
variable (for the application addressed in this paper the decision variable & will be a control surface
deflection). The plant’s Pl measurement process is represented by the nonlinear static characteristic
J(-) in series with alinear filter Gy(s) representing possible sensor dynamics. The transfer functions
Gt and G, are, respectively, a signal-shaping filter used to eliminate undesired frequency components
at either side of w,, and alow-passfilter. All transfer functions are assumed to have unitary gains. The
tandem (M, G) in figure 2 acts as a demodul ator, eliminating most of the wg-harmonics remaining in
the feedback loop (mainly the 2w, term; see eg. (5)). As an exponentially weighted time average of the
product 1, the output of G4 (the convolution between the low-pass impul se response and T1) is seen as
an estimate of the current correlation between the inputs to the multiplier M. The cascaded block
GtGp(9) introduces a phase angle ¢ at the frequency .

For design and analysis purposes, only the information contained in the low-frequency components of
the signalsin the circuit is of interest. For that reason, following the guidelines of reference 10,
chapter 9, the system in figure 2 is transformed into an equivalent low-pass network. Figure 3 shows
the corresponding equivalent network for a quadratic J asin equation (1).

Jt

\ 4
o

A

\ 4

950073

Figure 2. A single-dimensional extremum-searching algorithm.

Plant
6*
— r | | Bp » Bf
y TpS +1 s+l
—_ (J (6)) (G P) (G f) v
o8
12 A?cos($ - ¢,)
(M)
K/s |« Ga |«

950074

Figure 3. Envelope equivalent circuit.



Under each block of figure 3 isindicated, in parentheses, the originating block from figure 2. In the
samefigure, 8. represents the low-frequency component average of the feedback signal 8. The
parameters of the equivalent system are calculated (see ref. 10 and the example in appendix A) as

00 (w
By = [Sytiay): 1, = - 2
(»)=(.00
9)
00 (w
Bt = |Gi(iwy)]s T4 = - ¢af£) )

where \G(j wo)\ and ¢ (wy) indicate, respectively, the module and the phase angle of the transfer
function G at jwy,. The equivalent network in figure 3 is used for the stability analysis and design
purposes of the adaptive optimization algorithm. The designer has at his disposal the gain K, the phase
compensation ¢, the perturbation signal amplitude A, and the frequency wy,. The transfer functions of
the filters G; and G4 can also be used to refine the design. For K sufficiently small (as we saw, asmall
K is also required for the validity of our analysis), T, > 0, T¢ > 0 (which isthe case in practice), and ¢
selected such that ¢ — o O (—1/ 2, T/ 2). The integrator on the feedback path ensures the exponential
convergence of . to its optimal value & under wide changes of the open loop gain (i.e., G, B, Bp
etc.).”" The convergence to the optimum is, thus, arobust property of the algorithm.

Single-Surface Velocity M aximization Mode

For the sake of clarity, wefirst consider the speed-maximization mode. The fuel-flow minimization
mode, proposed later, is seen as a natural extension of the speed-maximization mode.

Design Approach With I deal Altitude-Hold Assumption

This mode makes use of an altitude hold with the PLA kept at a constant position. From the three-
degrees-of-freedom longitudinal flight equations of motion (ref. 14),

mV = —D-mg siny+T cos (10a)
mVy = L-mg cosy+T sin a (10b)
Iy =M (10c)
h = Vsiny (10d)

The wind component of the acceleration is given by

V = 2/T(5, FC)cos a -a(V, p) SCp (8, FC) ~mg sin Y] o

Flying conditions (FC) includes all the uncertainties and unmodeled effects of changing factors, such
asweight, center-of-gravity position, windaircraft velocity, altitude, and aging engines and surfaces.
The expression T( , FC) corresponds to the unknown actual (as opposed to nominal) engine static
characteristics relating thrust with the FC at constant PLA. The vector 8 in equation (11) isageneric
vector of independent decision variables. The dependence of T on 8 emphasizes possible effects of the

**This can be concluded from the diagram of figure 3 using standard linear techniques (e.g., root locus).
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surface configuration on the net engine thrust during the optimization (mainly because of airspeed
changes in magnitude and direction). Two decision variables, the deflections of outboard ailerons (84)
and outboard flaps (8f), are considered in this report. This section considers only one independent
surface deflection denoted generically as dqyrf (0 { 841, 05}) The other surfaceis assumed at its
nominal deflection, typically & = 0. The elevator deflection &y is a dependent variable and, thus, does
not explicitly appear in equation (11). The deflection &g isimplicitly determined by o4, and the given
level flight condition.

We designate as optimal the surface configuration that maximizes the excessthrust: T—SqCp. With
the assumption of anideal atitude hold, i.e., y = y = 0, itisseen from equation (11) that the
optimum corresponds to an extremum of V. This|atter variable can thus be used as the measurable PI
for the optimization. In practice, the velocity V may be a better parameter than V in terms of available
sensor resolution. For this purpose, Espafia and Gilyard (ref. 11) suggested an algorithm modification
that allows the use of V (instead of V) as the measurable PI. That modification will not be considered
in this report, whose focus is on more general methodological issues.

The optimal deflection 6;urf must satisfy the necessary condition for optimality:

oV 1[ 0 _ i)
— = =|=—T(8,FC)cos a —q(V,p) S==— Cj (3 FC)} =0
0 surf . m aasurf aasurf b .
Osurf Bsurf (12
V(égurf) =0

Figure 4 shows the autopilot and optimizer loops for a single surface optimization (dgy); h, h, and hp
are, respectively, the atitude, its time-derivative, and the engaged (desired) altitude; 6= A sin(wgt) is
the excitation or probing signal; 6‘;‘) isthe elevator command generated by the altitude hold
(autopilot); & isthe surface command generated by the optimizer; &, isany initial estimate of the
optimal deflection.

The frequency wy, of the sinusoidal excitation &g, aswell asitsamplitude A, is chosen small enough that
the dynamics of the aircraft in closed-loop operation with the autopilot can be neglected. Such achoice
isrequired to ensure the validity, in practice, of theideal autopilot assumption. For the design, the
sensor dynamics (fig. 3) are al'so neglected by assuming B = 1 and 1, = 0.

PLA (constant)

Altitude h
hold «—— D

Optimizer |«

950076

Figure 4. Autopilot and external optimizer loops.



The effects of configuration changes on the engine’s net thrust are not taken into account for design and
analysis purposes. The underlying approximation allows for asimplified design procedure aswell asa
deeper insight into the qualitative and quantitative aspects of the performance optimization algorithm.
Nominal aero data are used to determine the trim-drag characteristic for the nominal flight conditions
as afunction of the independent surface dgf varying in its admissible range. (At each point of the

characteristic, the dependent variable &4 takesthe value necessary to compensate for moment changes.)

The (nominal or measured) trim point characteristic relating dg,f With Cp (trim drag coefficient) is
fitted with a second-order polynomial from which the characteristic’'s average curvature I'cp is
determined (eg. (1)). Now, from the incremental relationship,

. SACHQ
v = - >0

(13)

obtained from equation (11), the average curvaturefor the Pl (V in thiscase) is determined as (eq. (1)):
Nace = 0T cp /M. Notice that, given the algorithm’s convergent properties, discussed in the previous
section, the above constants need only be known approximately. For simplicity, the massis assumed
constant in this paper (no fuel burn). In practice, the mass value used in equation (13) could be updated
periodically with an estimate of the fuel consumed. As stated before, changesin the actual I 5¢c will
only affect the convergence dynamics of the algorithm, not the final value.

To keep the design ssimple, Gf and G, in figure 2 are chosen as the first-order transfer functions:

_ s . W

Gt = ,
Fos+w, 727 s+,

(14)

Given theroles of G5 and Gt, wy has to be simultaneously on the band pass of G; and out of the band
pass of G,. For this purpose, the simple choice (admittedly, somewhat an arbitrary one) is adopted:
Wh = 0y = W/ 2. The phase angle induced by G at wy, can be shown to be ¢ = 26.5°. Because the
dynamics of the aircraft have been neglected, we choose, in figures2 and 3, ¢ = ¢ = ¢5. From
equations (9), we then have

(DO
W, + W
0 h (15)
L= _ 2
f= "2 2.7 Bw.
(g + wy,) 5w,
From equations (14) and (15), the open-loop transfer function poles of the equivalent systemin
figure 3 are 0, wy/ 2, 5wy/ 2. After normalizing by wg, the open-loop transfer function resultsin
3
G/w _ 2 S~
2o 2;G:Z%ZA£K cof (16)
S/ Wy, (S/wy+1/2) (s/w,+5/2) o 40, O M .

o

where G is the combined (nondimensional) gain of the blocks J, Gt, M, G, and K/ s of figure 3 put in
cascade. The normalized dynamics of the performance optimization algorithm are characterized by
the closed-loop poles of the transfer function (16). Those poles can be conveniently placed by an
appropriate choice of the normalized gain G . The critical normalized gain for a deadbeat response can
be shown to be G, = 0.1408, with a corresponding pair of coincident normalized dominant closed-

11
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loop poles at —0.24 and a single normalized fast pole at —2.52. With the above choice of G, the
normalized closed-loop response enters the 5-percent band around the final value at approximately

20 sec. As a consequence, the optimizer with excitation frequency wy, is expected to reach the 5-percent
band of the optimum at 20/ w, sec. The algorithm’s gain K is calculated from equation (16) after
appropriate constants substitutions. This completes the algorithm design. Equation (16) also givesa
way to schedule K with the dynamic pressure q (281 Ib/ft2 for the nominal flight condition, i.e.,
altitude 30,000 ft, Mach number 0.8). Notice that for agiven design criterion (acritical design criterion
is chosen in this report), the adaptation gain, the corresponding closed-loop poles, and consequently,
the convergence speed of the algorithm are all proportional to the excitation frequency wg.

Effects of Constraint Violation

To search for the optimal condition, the adaptive performance optimization algorithm uses estimated
correlations between the Pl and sinusoidal probing signals applied to the decision variables. For the
velocity maximization mode with fixed throttle position, the horizontal acceleration (measurable Pl) is
adirect measure of the excess thrust only if the ideal atitude-hold assumption (namely, h=0or

y =y = 0) issatisfied. In practice, however, the latter condition is satisfied only approximately, and
the altitude's derivative features remnant oscillations of frequency w,. Those oscillations may have a
determinant effect on the algorithm convergence properties. In fact, appendix B shows that the
difference between the final value 6:’“” attained by the algorithm and the optimum B;Wf is
approximated by

8 1t —Bourt O 219 corr{h/v, 5} (173)
MNpA
O —2— corr{E,, 5 (17b)
[ Ve A2 s

where, by definition, I'p : = g SI'¢p; corr{ ., . } indicates the temporal correlation between the signals
inside the brackets; V,, isthe averagefinal velocity; and Epistheaircraft's potential energy. The offset
with respect to the optimum, indicated in equations (17), cannot be compensated for unless a detailed
mathematical description of the aircraft is known beforehand. This is precisely what the optimization
methodology intends to avoid. Given the low level of performance improvement expected and the
direct influence of the total aircraft weight (mg in eg. (17a)), those deviations may be significant for
large transport aircraft. Moreover, the offset may be magnified in multivariable optimization because a
superposition of the effects of the individual loops could be expected in this case.

Equation (17b) gives an energy interpretation of the optimization offset. If the altitude is varying, an
excess thrust change is not necessarily spent totally into a kinetic energy change but also into a
potential energy rate-of-change that goes undetected by the measured Pl (V). Interestingly, changesin
Ep induced by changesin environmental conditions (such as gusts, winds, and air density changes),
un- correlated with respect to &g, will not produce, on the average, any optimization offset. Thisis
inherent to the correlation approach used to estimate the gradient, given that only those changes
correlated with dg are weighted by the online correlator.

We now denote by G,(s) the transfer function between &5 and the path angle y when the altitude hold is
in the loop. Recalling that d4(t) = A sin(wgt), equation (17a) is transformed into (appendix B)

© & 2mg
surf surf FD%/‘GV(J'(UO)‘%

5 cosf, (jwy)H (18)



where \Gy(j wo)\ is the module, and ¢(jwy) is the phase angle of G(s) at jwy. The factor

1/ \Gy(j mo)\ isthe disturbance rejection at w, provided by the altitude hold over the path angle. The
altitude hold is typically designed so asto make 1/ \Gy(j 0,)| big at very low frequencies (integrator
in the loop). For increasing frequencies, the autopilot rejection capability deteriorates, thus increasing
the optimization offset. Consequently, because low excitation frequencies correspond to slow
algorithm convergence (see comments following eqg. (16)), the algorithm imposes a compromise
between convergence speed and accuracy. The next section proposes a solution to this compromise.

Adaptive Constraints Control: An Adaptive Noise-Canceling Approach

To resolve the compromise just mentioned, the constraint control function of a practical autopilot may
need to be enhanced. However, because the autopilot design requirements are specific to the type of
aircraft and mission, a method that requires the redesigning of the autopilot to fit the needs of the
optimizer is not desired in practice. The compromise is solved by using an adaptive constraint control
technique that leaves the autopilot untouched and, even moreinteresting, does not require any a priori
knowledge of the autopilot.

Adaptive noise-canceling techniques are particularly effective for eliminating undesired disturbances
with known frequency spectra. The technique was pioneered for the discrete time case by Widrow and
others (refs. 12 and 13). In appendix C, the continuous time version of the algorithm, suited for the
application at hand, is derived using current adaptive theory tools.

In our problem, we seek to eliminate the wy-frequency oscillations present in h (or at least to
decorrelate them with respect to the probing signal d; see equations (17)). Synthesizing a sinusoidal
elevator command signal 62, with adequate phase and magnitude can compensate for the excitation
signalsintroduced on the optimizing surface (the aileron in this case).

We assume, for the moment, that superposition can be invoked to decompose h in the following way
(linearity assumption):

h = hy+hs+ hg = hb"'hs’*’C'\"el(j(“)o)ESZI (19)

where HS isthe aircraft-autopilot H—reeponse to the probing signal &5 applied to the ailerons

command; h istheeffect on h caused by the compensating signal & ; hy, isthe basic h component

not reflecting the effects of d5 and 6; ; and Gg(jwy) isthe transfer function between the elevator and
h. We now define S 002 as

s = [X,Y],n"(t) := [cos(wyt), sin(wyt)] (20)

With an adequate choice of the vector S, any sinusoidal signal s(t) of known frequency w, can be
written as

s(t) = Xcos(wyt) + Ysin(w,t) = STn(t) (21)

In particular, the (unknown) compensating elevator’s signal command is expressed as

8 (t) = 0Tn(v) (22)
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where 0:= [, ] isthe parameter vector, to be determined by the adaptive algorithm, such that
h +hg —» 0. Now, for \Gel(jooo)\ and Y(ju), respectively, the magnitude and phase angle of the
transfer function Gy (jwy), We can also express hs as

hs(t) = |G (jw)|(Mcos(w,t + W) + Nsin(w,t + 1))

= ‘Gel(on)‘UTan(t)

(23)

where Ry, indicates the Y-rotation matrix. Following the results of appendix C for pe: 0 < pe << 1, 0
can be adapted with the algorithm:

0 = —ughn() (24

The transfer function Gy relates aerodynamic forces/moments (proportional to the elevator’s
deflection) with a mechanical speed. In consegquence, as a simple mechanical argument shows, Gg has
adominant pole at the origin, implying a phase shift of approximately -1/ 2. Under these conditions,
the use of the modified version

0 = Ry, n(t) (25)

is recommended in appendix C, where the rotation matrix RlIJo isintroduced into the algorithm to
improve stability and convergence speed when an estimate Y, of ) is available.

Summarizing, for Y, = —Tt/ 2, the adaptive velocity maximization algorithm with adaptive constraints
controller (ACC) is given by the following set of equations (A(s) and INM(s) denote, respectively, the
Laplace transforms of d.(t) and T(t)):

n(t) = AVsin(w,t—0) (26a)
KG_(s)
Bg(s) = —=—T1(s) (26b)
5ai| = 6C+Asin(coot) (26¢0)
By = B + 5y, (26d)
M = —pheos(w, t —1/2) = —phsin(w,t) (266)
N = —phsin(w,t—1/2) = pghcos(o,t) (26f)
8g (1) = Mcos(a,t) + Nsin(w,t) (260)

Figure 5 depicts the resulting block diagram of ACC (adaptive disturbance rejection on the h signal).
The changesin the interconnections for the diagram of figure C-2 of appendix C account for the -1/ 2
rotation required on n(t).

Arguments similar to those leading to equation (8) allow us to interpret equations (26€) to (26g) as an
adaptive mechanism to decorrel ate the fundamental w,-harmonicin h with respect to 8¢(= A sin(wet)).
From equation (17a), this isthe necessary condition to suppress the bias in the optimization (higher
harmonics of wy, are decorrelated with the fundamental ). Because convergence only requires
decorrel ation between (the fundamental harmonic of) h and Os (equivalent to M=0 inequation (26€)),
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Figure 5. Adaptive constraints controller: 6; signal synthesizer.

we conclude that the assumption of linearity between the effectorsand h is not needed (i.e., higher
harmonics do not affect the convergence process) for the optimizer combined with ACC to reach
the optimum.

Consequently, the algorithm (26) is expected to work well with actuators involving such nonlinear
elements as position or rate saturations, hysteresis, dead bands, and nonlinear time delays. Equation
(26f) shows that, upon convergence, h isalso uncorrelated with respect to cos(wet). Thisis not
necessary for convergence of the optimizer, but, given that &5 and cos(wgt) are orthogonal signals, this
fact has as a consequence the (theoretical) annihilation of the wy-oscillationsin h.

Results of Simulated Experiment

For purposes of demonstration, the aileron deflection, &, is selected as the active surface. Calculated
from the trim point characteristics at the nominal flight conditions, the optimal &, deflection has an
approximated value: 6;” = 3°. From the aerodata the average curvature, I'cp is estimated asMcp =
7.32E — 05 [deg 2], giving for the Pl average curvature the value: I e = .M cp S/ M= 8.0E —

03 [ft.sec2.deg?]. Following the design criterion mentioned previously, from equation (16) we have

_ 40,Ge 320,
KaiI - 2 - 2 (27)
JBAT oo A

Theamplitude of the excitation signal waschosenasA = 1°. Two excitation frequencies, witharatio 1:3,
were selected to investigate the effects of the w, parameter. The lower value, w, = 0.025, was set low
enough, through atrial-and-error process using the simulation, to ensure good enough rejection, by the
altitude hold, of the h-oscillations. For this case, it corresponds with K = 0.79 [sec3/ ft], and only
small differencesin the Pl with and without ACC are expected.

Figures 6(a) to 6(h) display the results. Figure 6(a) shows the corresponding increase of the true
airspeed caused by an increase of the net thrust provided by the optimizer. Figure 6(b) shows the
corresponding reduction of Cp. As seen by comparing the curves with and without ACC, differencesin
the velocity for very low excitation frequencies are only minor. From figure 6(b), however, the average
Cp isdlightly smaller with ACC. For the chosen wy, the optimizer is expected to attain the 5-percent
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Figure 6. Velocity maximization mode; & is the decision variable; wg = 0.025.
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band of itsfinal value at approximately 20/ w, = 800 sec, which isin total agreement with the plot in
figure 6(c). Thisfact isin good agreement with the dynamic predictions provided by the analytical
toolsintroduced previously in the Design Approach section.

The steady-state (final) aileron deflection, however, does not coincide with the optimum value
determined from the characteristics (i.e., 3.8°) when ACC is not used. As shown, this lack of
coincidence isthe result of the constraints violations caused by the invalid assumption of an ideal
autopilot (notice the +20 ft oscillations in the atitude shown in fig. 6(e) without ACC). On the other
hand, figure 6(c) shows that, with ACC, &,j converges to the optimal value: 6; | =3.8°. Inthiscase,
however, the dynamic cannot be predicted using the results of the Design Approach section, which do
not assume the presence of ACC.

The overall dynamic now depends on the newly incorporated ACC module whose dynamic is
implicitly determined by the adaptation gain, L. The latter gain was chosen as e = 0.001 for these
experiments. Figure 6(g) displays the time history of the M and N parameters. Figure 6(f) illustrates
the real effect introduced by ACC; namely, a dramatic reduction in the oscillations of h after the
adaptation period. While this adaptation is performed, notice how the surface deflections with ACC
depart from those without ACC (fig. 6(c) also displays the corresponding &g deflections for both with
and without ACC cases).

Notice, comparing figures 6(c), 6(f), and 6(g), how the correction towards the final (optimal) value 6; |
parallels the convergence of ACC and corresponding asymptotic elimination of the oscillationsin h.
The effectson V shown in figure 6(d) are also of interest. The algorithm with ACC reduces the
oscillations on V. mostly eliminating the first harmonic. The fact that only the second harmonic
subsistsin V and Cp (fig. 6(b)) is adirect result of attaining an extremum for the acceleration
coincident with drag minimization. From the plots shown in figures 6(h), the product, hsin (w,t) hasa
nonzero average without ACC, indicating correlation between both signals. This correlation, as
predicted, is responsible for the optimization offset. The curves with ACC demonstrate, on the other
hand, how ACC asymptotically eliminates this correlation. Figure 6(€) shows the effects of ACC on the
altitude oscillations.

The effects of alack of an appropriate constraint control are accentuated when higher excitation
frequencies are used. Figures 7(a) through 7(h) show simulated results for wy = 0.075 and
corresponding gain K = 2.4[sec3/ ft]. In particular, figures 7(a) and 7(b) show that, without ACC,
performance may even be degraded (decreasein V, net increase in Cp) with respect to the
nonoptimized case. This degradation results from alarge offset between the optimum and the actual
convergence value of the optimizer, as figure 7(c) shows. Notice, nevertheless, in figure 7(c) that,
without ACC, the 5-percent convergence timeis approximately equal to 20/ 0.075 = 266 sec, showing
that the dynamic behavior is till, as theoretically predicted, three times faster than with wy = 0.025.

As stated before, the increase in convergence speed is not apparent when the ACC is adapted
simultaneously with the optimization. By starting the ACC with pretuned parameters, the effects of
ACC dynamicson the optimization are sensibly reduced. Under these conditions, the predicted dynamic
(from the Design Analysis section) comes closer to the actual results (the bold linesin figs. 7(a) to (c)),
featuring three times faster responses of the surface defl ections (compare fig. 7(c) with 6(c)). For this
experiment, however, in comparing the optimizer that has pretuned ACC with that with zero ACC initial
parameters, we notice that the airspeed improves only slightly within the time horizon shown.

We now make an important distinction between attaining the optimal surface configuration and
attaining the maximum speed. In fact, even after the configuration has been optimized, the newly
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available excess thrust causes the aircraft to continue to accelerate. Dynamic pressure and Mach
number effects later stop the speed increase. The slow diminution in Cp, seen after the optimization,
parallels aslow average diminution in the angle-of-attack speed increase (more speed, more lift, and
thusless a and Cp) not shown in the figures.

Therest of the plotsin figures 7(a) through 7(h) are similar to those in figures 6(a) through 6(h).
Comparing both sets of figures, we see that the increase in wy produced larger h oscillations (fig. 7(e)
and a stronger correlation between h and 8 (fig. 7(h)); both effects are responsible for the larger
deflection offset when ACC is not used.

This simulated experiment shows that the proposed approach may improve the optimization
convergence speed (through a faster excitation) without degrading the accuracy. Similar significant
improvementswere obtai ned with experimentsinvolving symmetric flapsasthe decision variable or the
combination stabilator—elevator asthe pitch-compensating actuator. In the latter case, the stabilator was
driven by a constant-speed motor with a dead band in its control loop. In spite of these nonlinearities,
the algorithm featured a perfect convergence to the optimal stabilator/aileron configuration.

Single-Surface Fuel-Flow Minimization Mode

In the fuel-flow minimization mode, the constraints are the engaged altitude and speed. Excess thrust
is kept constant (at zero) while reducing simultaneously the aerodynamic drag and engine thrust.
Similar to that for the velocity maximization mode, the optimal surface configuration is such that
small changes around it keep the excess thrust almost unchanged (excess-thrust extremum). Because
the thrust T is affected by both PLA and the surface configuration, we assume, for small configuration
changes, that it may be decomposed as T = Ty(PLA) + T5(dgurf). For the velocity optimization mode,
this distinction was not needed because PLA was unchanged.

Using a correlation interpretation, a necessary condition for the optimum isthat corr {Ts —D, &g =0
(asbefore, &g isthe small sinusoidal perturbation applied to the actuator chosen as decision variable).
This condition is aso sufficient for the unimodal case, which isthe typical case in practice for the
problem at hand. Using thefact that To(PLA) isamonotonefunction of PLA, from the vel ocity equation
of the longitudinal flight motion, equation (11), the optimality condition, is satisfied if simultaneously

corr{V,3} = 0 (283)
corr{h,8} = 0 (28b)
corr{PLA,d;} =0 (28c)

For ideal altitude and velocity holds (h = V = 0), thefirst two conditions (28) are automatically
satisfied. As was already discussed, however, an actual practical autopilot implementation may not
totally cancel the oscillationsin h and V. Similarly, as with the velocity optimization case, those
conditions are achieved by superimposing a set of (adaptively synthesized) signals on the commands
generated by the autopilot. The resulting PLA and 8¢ commands are thus

PLA = PLA® +pLA® (29)

86 = Bei + 3y (29)

el =

As before, the superscripted ‘s’ indicates the synthetic signals. The superscripted ‘ap’ identifies the
magnitudes generated by the autopilot. The degrees-of-freedom for the constrained optimization are
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Saurf, PLAS, and &, . The magnitude &, is used to impose condition (28b), asin the velocity
optimization case, by means of the algorithm depicted in figure 5. Two alternatives are | eft for dg,rf and
PLAS;
(1) PLASisused to ensurethat corr { V, 8¢ = 0 while the optimizer searches for the surface
(dsurf) such that corr { PLA, &g = 0. This alternative is equivalent to choosing PLA asthe
measured Pl.

(2) PLASisused toimpose corr { PLA, &g = 0, while the optimizer searches for the surface
configuration such that corr { V, 8¢ = 0. Inthiscase, V playstherole of the PI.

The second alternative uses the same Pl (V) as the velocity optimization mode uses, and thus, both
modes share the same optimizer. This alternative allows us to design and tune the optimizer for only
one mode, preferably for the simplest one (i.e., the velocity maximization mode), and use the same
design for both modes. Given this attractive characteristic, the second alternative was retained.

The adaptive constraints controller, which is used to ensure the condition corr { PLA, g = 0, is easily
obtained from the diagram of figure C—2 of appendix C by identifying PLA with y,y, u with PLAS and
letting the transfer function of channel C equal 1. The resulting structure corresponds to the original
adaptive noise canceller proposed by Widrow et al. (ref. 12).

Summarizing, the adaptive fuel-flow minimization algorithm with adaptive constraints controller is
given by the set of equations (264) to (26g) combined with the following:

PLA = PLA®®+pLA® (26h)
PLA® = Pcos(w,t) + Qsin(w,t) (26i)
P = p,PLA cos(w,t) (26j)
Q= MpPLASIN(w,t) (26k)

where L : 0 < pp << 1. Figure 8 depicts the diagram corresponding to equations (26).

Velocity
hold

P Wy |l x cos(wyt)

AA

AA

Qf Moy j= x
ACC

4—|
A J | sin(@et)

950094

Figure: 8. Adaptive constraints controller: PLAS signal synthesizer.



Results of Simulated Experiment

We now consider the results of the simulation tests performed for the fuel-flow minimization mode, this
time using symmetric flaps deflection (instead of ailerons) as the decision variable. The nominal trim
point characteristics at the given flight condition indicate that the optimal symmetric flap deflection is
é*ﬂ = 3°. From the aero data, ' cp was estimated as ' cp = 1.4E — 05[deg?], and the corresponding

[ ace 8 T ace = 15.3E — 03[ft.sec2.deg?]. In this experiment, w, was chosen to equal 0.0975 rad/sec.
Similarly asin the aileron optimization case, the excitation amplitude was taken asA = 1°.

Choosing the same algorithm design as for the velocity maximization mode, i.e., G, = 0.1408, we
calculate Ky = 1.62[sec3/ ft]. The expected convergence speed of the algorithm is characterized by the
estimated rise-time to the 5-percent band: 20/ 0.0975 = 205 sec. As with the velocity maximization
mode, the elevator isused to compensate for pitch moment changes. The altitude and the vel ocity holds

wereboth activated. The signals synthesi zed by the ACC were added to those generated by the autopilot.

As discussed before, ACC for the fuel-flow minimization has two parts. The part common to the
velocity maximization mode, represented in figure 5, is called here ACCL. The other part, specific for
the fuel-flow minimization mode, is called ACC2 and is described by equations (26h) to (26k).
Figure 9(a) shows a significant difference in the averages of the PLA (only deviations with respect to
the trim value of PLA areindicated in the figure) between the cases with and without ACC.

The difference in the average is also noticeable between the cases ACC1 alone and ACC1+ACC2.
Note, particularly, for the ACC1 + ACC2 case, how thefirst harmonicsin PLA and Cp (fig. 9(b)) are
totally eliminated. This fact, together with the visible presence of the second harmonics, signalsthe
convergence of the average flap deflection to the optimum value. Thisresult is corroborated by
figure 9(c), which shows that only the ACC1 + ACC2 option tends to the a priori estimated optimum
(6?, = 3°), athough with ACC1 only, the convergence error is still considerably smaller than without
ACC. As expected, the ACC1 eliminates the oscillationsin h (fig. 9(d)). Thisresult isin agreement
with those obtained for the velocity maximization mode. No further improvement is obtained in this
sense with ACC2.

Figures 9(e) and 9(f) show the positive effects of ACC on the regulation of, respectively, velocity and
atitude. Figures 9(d) and 9(h) demonstrate the clear-cut effect of ACC in compensating for the
remnant oscillationsin potential and kinetic energies. Finaly, figure 9(g) shows the time evolution for
the adaptive parameters, for ACC1 and ACC2. The adaptation gains for algorithms ACC1 and ACC2
were arbitrarily made 10 times higher than the one chosen for velocity maximization, i.e., le = Hp =
0.01. The intention was to show, on one hand, what effects these gains have on the adaptation speed
(notice the time-scale change between figs. 9 and 6 through 7) and, on the other hand, that the choice
of their valueis not critical for design purposes.

M ultisurface Optimization

In this section, we use the algorithm devel oped in previous sections to optimize, simultaneously, more
than one decision variable. The decision variables considered are symmetric ailerons o, and
symmetric flaps 8. As before, the elevator deflection and the PLA are dependent variables used to
ensure the optimization constraints. Figure 10 shows the general structure of the multidecision
variable optimization.

Two frequencies, wyj = 0.075 and wy = 0.0975, are used for the independent excitation signals d¢; and
O, respectively, added to the command signals 4 and dq. Theratio wq/ wyj = 1.3 is chosen to avoid
possible low harmonic resonances. Each optimizer loop has its corresponding set of ACC1 and ACC2
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Figure 9. Fuel-flow minimization mode; & is the decision variable; wy = 0.0975.
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Figure 10. Multivariable optimizer.

modules. Each loop is designed independently, following the guidelines presented in the previous
sections. The corresponding adaptation gains are K = 2.4[sec3/ft] and Kq = 1.62[sec3/ ft]. The gains
for ACCs in both loops are selected as ple = pp = 0.005.

Velocity Optimization M ode: Results of Simulation Experiment

Figure 11 showsthe results for the multisurface vel ocity optimization mode. Two cases are considered:
(1) with pretuning of ACC parameters (i.e., theinitial condition of adaptive ACC parameters set equal
to the final values of a previous optimization), M,;; and N, for the aileron loop and My , and

N 7 for the flap loop; (2) without pretuning of the ACC parameters, (i.e., al initial conditions are set
equal to zero and the ACC parameters are adapted simultaneously with the optimization).

As can be seen from figures 11(a) and 11(b), the difference between both casesin the airspeed and total
Cp coefficient is almost unnoticeable. Compared with the single-surface optimization cases, a higher
final speed and lower Cpy coefficients are attained in the multivariable case. Figures 11(c) and 11(d)
show the time history of the surface deflections. The deflections appear to converge to approximately
the same values asthose in the singl e-surface optimization case, suggesting only alight coupling among
the optimization variables. With pretuned ACC parameters, the surface deflections show better transient
behavior. Thus, a smoother transient on the magnitudesis depicted in figures 11(e) to 11(g). The same
figures show, consistent with the a gorithm’s expected asymptotic behavior, that, independently of the
initial condition, the time history of both cases tends to converge toward each other. Finally, figures
11(h), and 11(i) show the time history of the ACC parameters with and without pretuning.
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Figure 11. Multisurface velocity optimization mode with and without pretuning of the ACC parameters.
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Fuel-Flow Optimization Mode: Results of Simulation Experiment

Figure 12 shows the corresponding results for this mode. Figures 12(a) and 12(b) show a PLA
reduction along with areduction in the total Cp coefficient As expected, the transient behavior is
improved when the ACC parameters are pretuned. Thisimprovement is also reflected in asensible
reduction of the excursions in the decision variables 8, and & (figs. 12(c) and 12(d)) and an
improved transient behavior for the variables shown in figures 12(e) through 12(h). Again, only the
transient behavior is affected with pretuning, while, asymptotically, the pretuned and nonpretuned
cases are indistinguishable.

Figures 12(i) to 12(1) show the adaptive parameters M, N, P, and Q. Notice how the learning period
of these constants approximately coincides with the bad transient period in figures 12(e) through (h).
This fact justifies the use of prelearned values of the M, N, P, and © stored in memory as future
initial conditions for the optimization algorithm. Those values, taken from a previous optimization (or
resulting from a purely in-flight identification trial without optimization) at the given flight condition,
are considered the best available characterizing the actual aircraft and flight condition.
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Figure 12. Multisurface fuel-flow optimization mode with and without pretuning of the ACC parameters.
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Concluding Remarks

An adaptive perturbational technique for in-flight performance optimization of atransport aircraft is
proposed and demonstrated for asimulated B-720 aircraft. The technique is simple and easy to design
and implement in an onboard computer. When applied to the combined system autopilot—aircraft as an
external loop, the technique requires no a priori knowledge of the autopilot design. The aircraft may be
optimized at its actual flight condition, characterized by altitude, speed, weight, center-of-gravity
position, actual engine characteristics, and aircraft age.

The algorithm is robust with respect to any a priori information used for its design aswell as changing
flight conditions. Noise, external disturbances (such as those coming from changing atmospheric
conditions), and measurement biases are naturally rejected by the algorithm whose working principleis
based on online cross-correl ation measurements between decision variables and a performance index.

The same index (i.e., the horizontal acceleration) is used for the speed-maximization mode and for
fuel-flow minimization mode; thisis because both modes are particular cases of an excess-thrust
maximization problem. Both modes share a major part of the algorithm. Moreover, the speed-
maximization mode algorithm is a submodule of the fuel-flow minimization mode. This fact adds
modularity and alternative ways to check the same algorithm.

The effects of the probing disturbances on the optimization constraints are compensated with an
adaptive feed-forward loop called an adaptive constraints controller (ACC). The ACC dlowsfor a
faster optimization than was possible previously by using the autopilot as the only constraint controller
device. More importantly, it prevents offsets with respect to the optimal decision variables. With the
ACC complementing the autopilot’s constraints-control capabilities, the optimizer takes full advantage
of the autopilot’s action, but without requiring any information on the autopilot design.

A straightforward extension of the single-variable design was used for multivariable optimization. The
multisurface optimization problem that was simulated seems to be somewhat decoupled. This fact
favors the convergence and dynamic properties of the steepest-descent type of algorithm used. Were
the problem at hand more coupled, an upgrade of the present version to a second-order one, such asa
quasi-Newton method, would help the convergence speed in the multivariabl e optimization case. More
research is necessary to ascertain whether this path is necessary, for instance, in an integrated airframe
propulsion optimization context. The good results obtained so far for the multivariable case encourage
apursuit of that avenue with the proposed algorithm.



The theory developed is sound, and the resulting algorithm exhibits good dynamic and convergence
properties. Moreover, the simulation results show the algorithm’s potential for handling complex
multivariable performance optimization problems. The algorithm is a suitable candidate for in-flight
integrated airframe—engine optimization. However, to apply the proposed approach requires a
determination of small sensitivity levels under realistic cruise flight conditions of transport aircraft.
The continued development of this technology requires algorithm evaluation in a high-fidelity
simulation (similar to those used for FAA-certified pilot training), followed by aflight test program
validation of the technology. A successful flight demonstration of the technology is required before
potential users and beneficiaries will commit resources to implement the technology in new aircraft
designs or retrofit programs.
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Appendix A
Sample Calculation of an Envelope Equivalent Transfer Function

Asasample calculation of an envelope equivalent transfer function, the cal culations corresponding to
the first-order system are

= K_
G(s) = 5+ D (A1)
The parameters for the envelope equival ent system are calculated as
B = [G(jwy)| = £ (A2)
p(L +wyg /p?)V/2
¢(w) = —arctan(w/p)0 1 = —(w = + (A3)
w W= 0w, p(l+w, /p?)
This gives the following equivalent transfer function:
1/2
K(1+ap /p?)
Ge(s) = (A4)

s+ p(1+o.)i /p?)
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Appendix B
Optimization Offset Caused by ConstraintsViolations
To show equation (17a), we start from the equations of the longitudinal flight motion:
mV = Tcosa —D —mgsiny (B1)
h = Vsiny (B2)

Asseenin the discussion of property P3 (eq. (7)), if ds isthe periodic excitation signal (i.e.,
0s= Asin wgt), the necessary condition for convergence of the optimizer algorithminthevelocity modeis

corr{V,d} = 0 (B3)
When the constraint is satisfied, h = 0 from (B1) we have the desired result, i.e.,
corr{ Tcos(a)-D, 8} =0 (B4)
However, if the constraint is not satisfied, instead of equation (B4) we have the condition

corr{V,8} = 00

corr{Tcos(a)—D,d;} = corr{mg h/V,ESS} = corr{ Ep/V, o} (B9
that we approximate by (see footnote on p. 6)
corr{ D, 8} 0 —corrEp/V, & (B6)
On the other hand, assuming for D the expression:
D = Do+;§(5—6q2 (87)

withT'p : = g9 ¢p, and following adevelopment similar to that used in the Design Analysis section to
obtain equation (6), the left-hand side of (B6) turnsinto

AT,
corr{d, D} = 5 (6-30) (B8)

Equations (17) are thus obtained substituting (B8) into (B6).
Now, usingtheapproximationvalidfor aimost leveledflight: sin(y) Oy , between(B2) and (B6) wehave

2mg
2
D

5° -d00-

corr{y, &} (B9)

Besides, by definition of Gy(jwy), the wg-component of y(t) is \Gy(j 0,)| Asin(w,t + 6, (jo,)) , which,
correlated with d4(t) = A sin(wgt), gives

5 —80= —grmf‘Gy(jwo)‘corr{ sin(wyt), sin(w,t + ¢y(jw0))} (B10)

From (B10) follows equation (18) using a standard result of correlations between sinusoidal signals
(see expression (5) in the main text).



Appendix C
Adaptive Regection of a Sinusoidal Disturbance

The problem of a disturbance rejection from a measured physical magnitude of interest is posed as
follows. In figure C-1, y is the useful signal perturbed by the disturbance d. From the available
measurement yp, it is desired to remove the effects of d and thus recover the original signal y. For this
objective, an independent input u, going through the channel C, is available. Cis assumed to be linear
but with unknown transfer function G(s). The signal d isa sinusoidal signal with known frequency w,
but unknown phase and amplitude. It is assumed that w, does not liein the spectrum of y. The objective
isto design the adaptive signal synthesizer block that generates the required signal u so that d hasthe
appropriate phase and magnitude to cancel out the effects of d on y,. Using notation introduced in the
main text we write

u(t)= Mcos(w,t) + Nsin(w,t)= 0Tn (Cla)
d(t) = Acos(w,t) + Bsin(w,t) := D'n (C1b)
d(t) = |G(jwy)|(Mcos(wyt + ) + Nsin(wyt + 1)), (Clc)

Equation (Clc) can also be written in the more compact form:

d(t) = [G(10e)| 0" RN = [G(jwy)| (Ry,0) (D), (C2)
where
R.: = {cos( v)- s’n(w)J 3
sin(y)  cos(y)
is the Y-rotation matrix and Ry, itsinverse (or transpose given its orthogonality). We now define:
e:= d+d = (D+|G(jw,)| R_wU(t))Tn(t) =0 ()N (1) (C4)
B(t) == D +|G(jw,)|R,U(t) (C5)

We are looking for U(t) such that 6(t) — O (and consequently e(t) — 0). Accordingly, we first define
the matrix Q and the function L as

L(t) = =87() QO (t),Q =

1
Gl ¥ ©9

NI~

y(t)

u(t)

Adaptive signal
synthesizer

Figure C—1. Adaptive disturbance rejection scheme.
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For \G(jooo)\ #£0,Q>0,if and only if Y O (—1/ 2, 1/ 2) (rotation less that 90°) and L(t) isthusa
strictly positive function of time. From (C5) and (C6) we now calculate

L(t) = 8(1)TQB(Y) = 87U(1) (c7)
and letting

U(t) = —pen(t) (c8)
with U a positive constant we have

L(t) = —pe’<0 (C9)

Becausen is, by definition, a bounded conti nuolusfunction, from (C3), (C6), and (C9) we necessarily
havee -~ Oand® -~ 00 U(t) - —\G(jwo)\_ RyD.

For || = v/ 2, small changesin Y may prevent Q to be Q > 0. This fact can make the adaptation
algorithm (Cla), (C8) marginally stable, or cause avery slow convergence. If an estimate Y, of { is
available, (C8) may be substituted by

U(t) = —ueRr, n() (C10)
[0}
which, it can be shown, correspondsto Q = (1/ \G(jooo)\)RllJ _y - For Wo = Q>0, ensuring stability
and faster convergence. °

Because e(t) is not directly measurable, in practice we use y(t) instead of (t) in (C8) or (C10). In fact,
we show that both signal's produce asymptotically the same result. Consider the algorithm:

- ©

t t t t
0= —HI Y (1) dt = —IJJ yn(t) dT——HJ' en(r) dr Ieﬂ(T) dr (C11)

where the last limit results from the assumption that wy is not in the spectrum of y and the well-known
property of orthogonality of sinusoids of different frequencies.

The adaptation gain |1 is somewhat arbitrary aslong asit remains positive. In practice, however, it is
chosen small to ensure a smooth evolution of the adapted parameters. Given the averaging effects
shown in (C11), asmall u aso helps to reduce the effects of noise in the measure of y,.

The block diagram of the algorithm (C14), (C8), with e substituted by y, is displayed in figure C-2.
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Figure C—2. Adaptive disturbance rejection algorithm.
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